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Electrolytic depletion interactions
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We consider the interactions between two uncharged planar macroscopic surfaces, immersed in an electro-
lyte solution, which are induced by interfacial selectivity. These forces are taken into account by introducing
a depletion free-energy density functional, in addition to the usual mean-field Poisson-Boltzmann functional.
The minimization of the total free-energy functional yields the density profiles of the microions and the
electrostatic potential. The disjoining pressure is obtained by differentiation of the total free energy with
respect to the separation of the surfaces, holding the range and strength of the depletion forces constant. We
find that the induced interaction between the two surfaces is always repulsive for sufficiently large separations,
and becomes attractive at shorter separations. The nature of the induced interactions changes from attractive to
repulsive at a distance corresponding to the range of the depletion fp8dg63-651X99)14012-1

PACS numbegps): 05.70.Np, 65.50-m, 61.20.Qg, 87.16-e

[. INTRODUCTION sential ingredientdor the appearance of attractive interac-
tions. Thus most proposed mechanisms which lead to
Electrostatic interactions often play an important role in aattraction always include a non-mean-field effect.

variety of different systems, ranging from biological mem-  In this work we propose a mechanism for attraction be-
branes to chemical industrial paint ingredients. In somédween two identical plates. In contrast to the previous theo-
cases, it provides the underlying mechanism for the stabilifetical pictures, this mechanism is entirely at the mean-field
zation of mesoscopic systems against flocculation and prdevel. However, nonpure electrostatic forces are taken into
cipitation. When two macroscopic charged surfaces approacccount by including depletion forces—for example, those
one another, the result igsua”ya repu|sive force, which associated with finite ionic radii—acting on one of the ion
inhibits a further approach. For two flat charged plates, thig$pecies surrounding the plates. For simplicity, we consider
effect can be understood in a physical picture in terms of théhe case in which the identical plates are uncharged and in-
osmotic pressure generated by the difference of the ion corfinitely large. By consideringinchargedplates, we can dis-
centration in the region between the two approaching surcern the effect of the depletion forces separately from the
faces and the electrolyte-reservoir concentration. On th&isual electrostatic mean-field repulsion, which indeed turns
other hand, attractive interactions, which lead to aggregatioﬁut to be entropic and not strictly electrostatic. If we treat the
or fusion, are sometimes a desirable feature. This is the cas8rface-chargectase, we are not able to separate the two
for example, in the adhesion and fusion of vesicles and menfontributions. Due to the simplicity of the model, it is pos-
branes or in environmental sewage treatment. Furthermoré&ible to derive explicit, analytical expressions for all thermo-
some experimentsl—5] and simulation§6—9] indicate that, ~dynamical properties, including the disjoining pressure.

for small separations and high surface-charge densities, two The remainder of this paper is organized as follows. In
like-charged polyions can indeed attract. Sec. Il the model is introduced and the general equations are

From the theoretical point of view, several distinct obtained. Section lll is devoted to Solving the generalized PB
mechanisms leading to attractive interactions have been pr&duations for the nonoverlapping regime, when the depletion
posed, which are based on charge fluctuatiph8—12, zones associated with the two plates do not overlap. The
strong positiona| Charge Corre|a’[io|ﬁ$3_1a, anisotropic solution to the generalized PB equations for the overlapping
hypernetted chain calculatiofis6] or strong bulk-counterion regime, when the depletion zones associated with the two
correlations[17,18. Very recently a unified treatment, tak- Plates do overlap, is obtained in Sec. IV. Some concluding
ing into account quantum fluctuations and structural correlaremarks are presented in Sec. V. The closed analytical ex-
tions of the Wigner crystals formed by the condensed counpression for the disjoining pressure is obtained in the Appen-
terions onto the charged surfaces, has been propdsgd  dix.
Although the bare Coulomb force between two macroscopic
surfaces is always repulsive, correlations and/or fluctuations
can induce attractive interactions, which occasionally may
overcome the electrostatic repulsion between the two equally We shall consider two uncharged macroscopic surfaces
charged surfaces. Correlations, which are entirely neglectedhmersed in a symmetric 1:1 electrolyte within mean-field
within the mean-field Poisson-BoltzmarRB) approxima- theory. The system is modeled by two planar, infinitely thin
tion (Gouy-Chapman theor§20,21]), are believed to bes-  rigid and uncharged surfaces, separated by a disthnae

contact with a monovalent salt reservoir of bulk concentra-
tion ng. A Cartesian coordinate system is chosen so that the

*Electronic addresses: mtamash@mrl.ucsb.edu, surfaces are located at tlxe= =h/2 planes, in such a way
fyl@physics.ucsb.edu that thex axis is perpendicular to the surfaces. At the mean-

II. DEFINITION OF THE MODEL
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field level the microions are treated as an inhomogeneouwhere A is an arbitrary length scale. The electrochemical
ideal gas, with local number densitias (x) andn_(x) for  potential and the reference pressure were set, respectively, to
the positive and negative ions, respectively. We assume thaBu = In(A%ny) and 8I1,=2n,, since the system is in electro-
due to somenonelectrostatic depletiomechanism, these lo- chemical equilibrium with the infinite salt reservoir. The re-
cal densities become inhomogeneous in the region close wuced electrostatic potentiah(x) = Bey(x), wheree is the
the infinite plates. These inhomogeneities are governed bgroton charge ang(x) is the electrostatic potential, satisfies
the reducedtotal) free-energy functionalper unit arep f  the Poisson equation
= Bf, where=1/KkgT,

d*(x)

@ o= —Amln. 0 -n_(0], (5)

1Edepletion"' f PB»

which we split into two terms. The first term of Eql)
corresponds to aonelectrostatic depletiofree energy(per
unit area,

wherel=Be?/D is the Bjerrum length, and the solvent is
treated as a continuum of dielectric constBnt
Minimization of the reduced total free-energy functional

. h h [N, (x),n_(x)] with respect to the number densities,
fdepletion:‘EJ dX Ny (X)| We| X+ 5 | +We| X— 5|, (2) o
—w 2 2
of[n.(x),n_(x)] h
5 =In[n (X)/ng]+ P(X)+ €| Wy x+§
wheree is a depletion-strength parameterhich has dimen- n.(X)
sions of distance andw(£) can be considered a normalized h
external(nonelectrostaticpotential with a finite short range +Ws( X= 2) } =0, (6)
s. This term breaks the original degeneracy between cations
and anions, penalizing positive particles that are closest from o
a distancesto the surfaces. It mimics, for example, the effect SN (x),n_(x)]
of different sizes for the microions. Smaller negative ions are 5n_(X) =In[n_(X)/ng] = #(x)=0,  (7)

allowed to come in direct contact with the neutral surfaces,
whereas the positive particles, due to their larger size, ar
held apart from an effective distansgerelated to their sizes.

The effect of this term on the system is to yield an excess o
anions in the region surrounding the plates, leading to an
inhomogeneity of the local densities of microions in the vi- n+(x)=n0exp{ — p(X)— GWS(XJF _

S|

feads to the Boltzmann distribution for the optimum micro-
'%on profiles:

cinity of the uncharged plates. Thus, although the surfaces 2

are themselves neutral, this imbalance of microions gives ®
rise to a nonvanishing electric field. To allow analytical cal-

culations, we shall hereafter assume thgthas the step- n_(x)=ngexd ¢(x)]. 9

function form
Replacing Egs(8) and (9) into the Poisson equatio(b)

0 for [¢=s leads to a generalized PB equation
ws(§)=4 1 3
— for <s.
2s ¢ it —K—z exg ¢(X)]—exg — p(X)— ew x+E
d@ 2 Ws| 272
In the limit s—0, the functionwg(£) corresponds to the
Dirac delta functions(¢) =limg_ ows(&). Thereforewg has Cew x—E (10)
dimensions of inverse distance. Ws 2/ 1)’
The second term of Eq1), fpg, represents the reduced
bulk exces$B free-energy functiondper unit areg where k= 8mnyl is the inverse of the Debye screening
length.
— o 3 The appropriate boundary conditions are the vanishing of
fpe= 7wdx{n+(x)(ln[A ny()]-1) the electrostatic potential and the electric field at infinity,
+n_(X)(IN[A%n_()]= 1)+ 3 (X) [N (X)=n_(x)] P(Xx— +®)= ' (Xx— +%)=0; (12)

— n,(x)+n_(x)]+ pBII
Auln.() (0] + Ao} the vanishing of the electric field at the midplane=0),

= jidx{n+(x)ln[n+(x)/n0]+ n_(x)In[n_(x)/ng] &' (x=0)=0: (12)

1 _ _ _
+2600[N4 () =n-(x)]= [N+ (X)+n_(x) = 2no ]}, and the continuity of the electrostatic potential and the elec-
(4)  tric field across the planes locatedxat = (h/2) = s,
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h h
¢'<xTi§is)=¢’(xii§iS), (14)

where ¢(xTy)=limy ., ¢(x) and G(x|y)=limy_., &(X).
The boundary condition€l3) and(14) are based on the fact
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static depletion ofcationsaround the surfaces located at
==*h/2, the electrostatic potentigl(x) is always negative,
since there is an effective excessasfionsaround the sur-
faces. We shall consider two regimes separately, namely, the
nonoverlapping regimeh¢>2s) and the overlapping regime
(h<2s).

Ill. NONOVERLAPPING REGIME, h>2s

that the charge distribution, which appears on the right-hand In the nonoverlapping regime, which occurs when the

side of the Poisson equati@h), contains just dinite jumpat
the planesx= = (h/2)*s.

By symmetry we haveb(x) = ¢(—x), and we need only
to consider thepositive xaxis. Because of the nonelectro-

200 k2 sinh(x),

dx?

where we introduced the parametes= €/8s.
Using the identityd®¢(x)/dx?=3d[ ¢’ ]?/d¢, the nonlinear

e 22 sin ¢(x) + 2a]

separation between the surfaces is larger than the range of
the depletion forcesh>2s, the depletion zones associated
with the two interfaceslo not overlap,and the generalized

PB equation reads

for Osxsg—s and x>2+s

fi h < h+ o
or > s x<§ S,

second-order differential equation represented bil&ccan

be analytically integrated. Introducing the midplane electrostatic potempigdk ¢(x=0), and the internal and external

electrostatic potentials in the vicinity of the interfacexath/2, ¢ =

¢(x=(h/2)—s) and ¢ = ¢(x=(h/2) +s), the solutions

which satisfy the boundary conditiori$1) and(12) can be written explicitly as

r

kAL pm, p(X)]

fi o< <h
or \X\Z S

h h
¢'(x)={ wSOX=X)e “A[i,d(X)] for 5—s<x<7+s (16)
(X) h
\ —2KSInhT for x>§+s,
smhﬁ h
2 arcsin for 0sxs--s
2
cn( KXCOSh%,l/ cosh@)
(x)= sin ﬁ+ (17
¢ = e ;T pe o D h
arcsin - ¢ & —2a for E—s<x<§+s
cn e” *k(|x| —x;)cos al,1 / cosh—+a
2 2
b~ h
4 arctanhexp — « x— -S nhT for x>§+s,
|
where we introduced A (¢i,b)=\2 cosli+2a)—2 costi ¢+ 2a). (19)

A( ¢y, d)=— 2 coshg— 2 coshe,,

L ¢\/ bn [ &
—23|nh§ 1- S|nh7 sth

2

(18

cn(u,k) is the Jacobi cosine-amplitude elliptic function with
modulusk[22,23, x; is the inversion point where the electric
field vanishesg'(x;) =0, and the electrostatic potentia|
= ¢(X;) is an integration constant to be determined by the
boundary condition$13) and (14).

Matching the electrostatic potentid(x) at the planex
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=(h/2) = s by imposing the boundary conditiori3) gives 12 — .
sin h% 0.6 25n(x)/n,
— 2 arCSIn , — s S ——
o< h Pm Pm A 'S AN
cn k| z —s|cosh—,1 / cosh— i St || e
2 2 2 00 || T ——
(20 T e T
ototed || ";f’)f/’/": -
Fo i, )+ Fol(bi p-) -0.6 N S
KS= , (21
e~ cos ¢ N -5 -3 - 1 3 5
2 ¢ KX
FIG. 1. Reduced electrostatic potenti#]x) and density profiles
y  Hbm,b<) N Foldi <) (02 B functions of the distancefor the set of parameterse=1, «s
KA= bm i ! =1/2, andkh=5 (nonoverlapping regime All densities are nor-
COSh7 e “cos > ta malized to the salt reservoir density. The positive portion of the
particle-density excess(x) was amplified by a factor of 25.
where we introduced The total free-energy density associated with the electro-
é & é static potential17) and the microion profile$8) and (9) is
_ fpm ion m obtained by replacing their closed forms into the total free-
Flbm ¢)=F arcco%smh 2 / smh2 ’1/ COSh?)’ energy functional, given by Ed1), and performing the in-
(23)  tegrations. After some algebra, we obtain
Pl @ @)= H it 2adrza) if_=8xs<1—e2“)+2A<¢>m,¢><>( $-—4 Coth%)
0
=F arcco%sinr(ﬁJra / sinl-(era) , P
2 2 sinkf ==
1) 2
i +16& , cosh=" —8F( by, —_—
. Cosr(gm | 20 (tbm, ) COSTZE —BF(dn ) —— -
2 cosh7
and F (¥, k)=fgd9/\/1— kZsir? ¢ is the elliptic integral of b
the first kind[22,23. +2e “A (o ,¢<)[ d-—4 cotl‘(T +a
On the other hand, matching the electric figlt x) at the
planesx=(h/2)£s by imposing the boundary conditions -
(14) leads to +2e A (i, b-)| b= —4 COU‘(7+C¥
e 29 cosl¢p-+2a)—cosi - +2a)] &,
d) +1@7“[5a(¢i 1¢<)+ga(¢i !¢>)]COS}‘(E+Q)
=cosh¢ . — cosheg,— 2 sinif 7> (25)
sink? ﬁ +a
CosH g, + 2a) = coshi . + 2a) — 26 sint? 2. (26 —8e S b )+ Fol bin ) I g
2 cosh) > +a
Equationg21) and(25) represent a pair of coupled equations & &
which can be solved fo#,, and ¢-. , since we can use Egs. +4 sinh— b —4 tanh—>), (29)
(20) and(26) to eliminate¢- and ¢, , respectively. Once we 2 4
have obtainedp,, and ¢-. which solve Eqs(21) and (25), where we introduced
the electrostatic potentiab(x) can be obtained by replacing
them into the closed expressi@h7). To illustrate typical b b dm
profiles for the nonoverlapping regime, in Fig. 1 we show the€(¢m #<) =E| arccossinh—= /' sinh—-1,1 /= cosh—=,
reduced electrostatic potentiélx) and the density profiles
n.(x) for fixed values ofe, s, andh. We also present the
particle-density excess over the reservoir, Eal i d)=E(Pi+2a,¢+2a)
N(X)=n(x)+n_(x) =2no, 27) =E[arcco%sinl‘<%+a /sinl‘(?%—a ,
and the charge density, 4
1/ cosh =+ 31
p()=n.()~n_(x). (29 / *(2 « (31
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14 20
[— _,rzzt—::.::t:_j:i/.,' .\\\:::::::T““Ww” Ks= 1 K8=I
0.8 R /\
15 —
_.} e 10n(x)in, §O Ks—] / 2
0.2 AL R 185,
pmem T ~IiTimeeae p"
T T~ 10/ xs=1/4
ofx) o~
047 — n(x)in, .
"""" n_(x)in, L n{x)/ny (no factor)
=== n{x)in, i
~10 === p(x)in, L 05 . ; y .
e e T | 3 5 xh
Kx

) ) ) ) FIG. 3. Reduced total free-energy densﬁ;{s a function of the
FIG. 2. Reduced electrostatic potenigg(x) and density profiles  genaration of the surfaces for a fixed value of the depletion
as functions of the distancefor the set of parameterge=1, s strength «e=1) and three values of the depletion ranges (
=1/2, andch=1/2 (overlapping regime All number densities are  _ 14" 1/2 and 1 Although the free-energy density itself is con-
normali;ed to thg salt reservoir density..'.l'he positive portion of  iyu0us upon crossing the separatios 2s, it has a kink at this
the particle-density excesgx) was amplified by a factor of 10.  gpecial value, giving rise to a change between attractive and repul-
sive forces(see Fig. 4.
and E(z/;,k)zfo"’d 61— KZsir?é is the elliptic integral of the
second kind[22,23. The closed analytical expressi¢29) h h h
was checked against numerical integration of the free-energy Am(XZ 5°S )E +(XT E_S )—m(XL E_S )
density(1). In Fig. 3, we present the total free-energy density (35)
as a function of the separation of the surfabefer a fixed
value of the depletion strength and several values of the h h h
depletion ranges. An+(x= 5>+s )EM(XT 5ts ) —n+(x1 PRIEE
The disjoining pressurH is given by the negative deriva- (36)
tive of the total free energy with respect to the separation of
the surfacedh, for constant depletion strengthand ranges, the corrected expressions for the particle-density excess for
|x|>|(h/2)—s| are

of
= e h
All Ka%ag' (32 n(x)=n(x:0)+An+(x:

E—S

+ 002
K

where we introduced the dimensionless distaricesh and

No._ ,
— _ =n(x=x)+—[¢'(x)]* for
s=ks. After a lengthy calculatiorisee the Appendix we K

2% 2

obtain a very simple final expression for the disjoining pres- 37
sure: h h
7S <x< §+s ,
Bll=4ng Sinhz%:n(x:m_ (33 N A
n(x)=n(x=0)+An+(x=‘ +An+(xz_+s

The above simple analytical expression was checked against
numerical differentiation of the free-energy density for the + @[qﬁ’(x)]z
nonoverlapping regimé29). Thus, it turns out that the dis- K2
joining pressure for the nonoverlapping regime is given sim-
ply by the excess osmotic pressure of the microions at the
midplane over the bulkreservoij pressure. Although it
might be tempting to attribute this simple result to the
contact-value theorem for charged plat@d—26, we stress where we used Eqg25) and (26) to simplify the above
that this is not the case. Actually, an expression for thesxpressions. However, these additional contributions cancel
particle-density excess similar to the charged-plates case, when we evaluate the disjoining pressiifer the nonover-
lapping regimg and we obtain Eq(33), a result similar to
No the contact-value theorem expression for charged plates.
n(x)=n(x=0)+ —2[¢’(x)]2, (34 Since the disjoining pressu(83) is always positive, the in-
K teraction between the surfaces for the nonoverlapping regime
is always repulsive At the end of Sec. IV, in Fig. 4, we
holds only for O<|x|<|(h/2)—s|. Since there are nonvan- present the disjoining pressure as a function of the separation
ishing discontinuities for the density of cations (x) upon  of the surface# for a fixed value of the depletion strength
crossing the surfaces at= = (h/2)+s, and several values of the depletion rarsge

h+
ES

=ﬂ—(2)[q$’(x)]2 for x> , (39
K
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IV. OVERLAPPING REGIME, h<2s
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In the overlapping regime, which occurs when the separation between the surfaces is smaller than the range of the depletion
forces,h<2s, the depletion zones associated with the two interfaltesverlap,and the generalized PB equation reads

( h
e **k?sind ¢p(x)+4a]  for Osxss—E
d?¢(x . h h
i ):< e 2%%2sind ¢p(x)+2a] for s——<x<s+— (39
dX2 2 2

k2 sinh(x)

f h
2 —.
| or X=s+ 2

The calculation is analogous to the case when there is no overlapping of the depletiontzees,Now the pair of

coupled equations to be solved for,= ¢(x=0) andp- = p(x=s+(h/2)) is given by

KS= -7:2a(¢m¢;¢<) +fa(¢i'¢>)_‘¢¢;af(¢i’¢<) (40)
g 2 COS"(7m+2a) 2e‘“cosr<?'+a)
and

e 2cosi¢p-+2a)—cosi - +2a)]=e 4 cosi ¢ +4a)—cosh ¢+ 4a)]—2$inh’-%, (41)

where ¢ = ¢(x=s—(h/2)) and ¢;= p(x=x;) are eliminated by using the relations

sin % + Za)
=2 arcsin —4a, (42
CF{G_ZD‘K(S— g) cosr{%+2a ,1/COSI‘(%+2¢¥

cosl ¢+ 2a) = cosH ¢~ + 2a) — 2€?* sint?(p-.12). (43

Once solved the system of Ed40) and(41), the electric field, and the electrostatic potential can be obtained by replacing the

solution (¢,,,®~) into the closed expressions

h
ke %A, B(X)] for O=x=s-3
W h h
¢ (x)=1 Ksgnx—x)e “A [, d(x)] for S=5<X<st 3 (44)
X h
\ —2Ksinh? for x=s+ >
sinf(%JrZa
2 arcsin —4a for 0sx<s— =
o bm bm 2
cn e “*kxcos 7+2a ,1/ cos 7+2a
[ i
d(X)= sin ?+a h (45)
2 arcsin —2a for s—-<x<s+ -
W bi bi 2 2
cn e “k(|x| —x;)cos 5 Ta ,1 / cos -5 ta
— —_— — T ; —
arctanhexg — x| |X| 57S tan 2 or x=s+ 3,

with the inversion point given by
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P 7:2a(¢m¢-¢<) - 7a(¢i-5<) . 46
e‘z"cosk(TerZa e‘“cosr(7'+a

To illustrate typical profiles for the overlapping regime, in Fig. 2 we show the reduced electrostatic patérjiand the
density profilesn.(x), n(x), andp(x) for fixed values ofe, s, andh.
Again, it is possible to obtain a closed analytical expression for the total free-energy density,

Kf_—4(_ ﬂ 1—e %)+ 4n(1—e 2%)+ —1, 4
n_o - S_E ( —€ )+ ( —€ )+n_0 aux: ( 7)
K— _ —2a ¢< -2« ¢m
n—ofaux—Ze Ay (Do) p-—4 cot 7+2a +16e” ““E (dm,d-)COS 7+2a
sink? %4—201 &
—8e > Fou( b, b-) —2e—aAa(¢i,¢<>{¢<—4cotr(7<+a
COSl‘(—m+2a
2
—a b~ —w bi
+2e Aa(¢i 1¢>) ¢>_4COt 74‘0[ —16e [ga(¢i 1¢<)_5a(¢i 1¢>)]COS ?_Fa
sink? %-}-a) & &
+8e [ Fu( i, b) = Ful i $) - +4 sinhf( ¢-—4 tanhf), (49
cosl’(—'+a)
2
T
which leads, after some algebftaee the Appendjx to a V. CONCLUDING REMARKS

simple expression for the disjoining pressure: We have proposed a mechanism for attraction between

Jf neutral plates immersed in a monovalent electrolyte solution,
Bll=—k—],s=2no[e **cosh ¢+ 4a)—1 which does not include any correlation or fluctuation effects.
oh The electrostatic potential and the density profiles of the mi-
croions are obtained from analytical solutions of the gener-
alized PB equations, which include nonelectrostatic deple-
h tion interactions. Explicit analytical expressions of all
=n(x=0)+2An+(x=s— 5). (49)  thermodynamical properties, including the disjoining pres-
sure, were obtained.
We found that the repulsive interactions at large separa-

+2e %<"%ginh 2a]

The above simple analytical expression was checked against
numerical differentiation of the free-energy density for the
overlapping regimé47). It should be remarked that, in this
case, the disjoining pressudmes not have the forrof the
expression given by the contact-value theorem for charged
plates[24—26. An additional contribution due to the discon-
tinuity An,.(x=s—(h/2)) of the density of cations upon
crossing the surface located xats—(h/2), appears. Con-
trary to the nonoverlapping regime, this additional contribu-
tion does not cancel when we evaluate the disjoining pres- -08 ¢ |xs=1/4
sure. According to this imbalanced pressure acting onto the
neutral surfaces, this leads to an effective attraction between 0 2 4 6
them. Kkh

Figures 3 and 4 show the total free-energy density and the rG_ 4. Disjoining pressurél as a function of the separation of
associated pressure as a function of the separation of thge surfaces for a fixed value of the depletion strengthd=1)
surfacesh for a fixed value of the depletion strengéhand  and three values of the depletion ranges€ 1/4, 1/2, and 1 This
several values of the depletion rangeThe nature of the graph corresponds to the negative derivative of the curves of Fig. 3.
interactions changes from attractive to repulsive at a separaote the discontinuity of the pressure at the separdtisi2s, as-
tion h=2s. sociated with the kink of the free energy.

Ke=1
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tions become attractive when the separation between the
plates is decreased. The range of the attractive forces is

closely related to the range of the nonelectrostatic depletion
interactions introduced in the formulation of the model. Al-

though this result is not at all surprising, since the attraction
is induced by the imbalanced pressure originated from the

M. N. TAMASHIRO AND P. PINCUS
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(a¢m I I a¢>>
oh " oh "oh’ oh s
|__dbsuv 1,000, (A2
B &(¢m1¢<!¢ii¢>) ( ', ’O,

ionic depletion in the region between the two approaching . _ )

surfaces, we found that the disjoining pressiives not have Whereu andv are the boundary conditiortd4) written in a

the formof the expression given by the contact-value theoParametric form involvingpn,, ¢, ¢i, andé... We will

rem for charged plates. give the explicit expressions af andv (and the|r_ deriva-
The proposed mechanism could mimic neutral surface§ves) when we separately treat the nonoverlapping and the

immersed in an electrolyte solution containing ions of differ-overlapping regimes.

ent sizes. We expect to observe attraction when the separa-

tion between the two surfaces is comparable to the size of the 1. Nonoverlapping regime

smaller ions_,. We stress the fe}ct that we do not include any gqr the nonoverlapping regime, the total free-energy den-

non-mean—ﬂe[d effects to obtain attractive forces. Surgly, fo%ity is given by Eq(29), with derivatives

short separations, other features should be taken into ac-

count, as for example, the discreteness of the charges and b
ionic correlations. However, using an exactly solvable o d—=4€(¢m.¢<)sinh7
model, we showed that the inclusion of non-mean-field ef- 0 dém
fects is not anecessary conditioto obtain attractive inter- 2 sinhg, bm b
actions. - m( b-—2 tant??coth?) ,
(A3)
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x df _de-lg +e | i n
nodg, e [Ea( @i <)+ Eal i) ]siNN =+
APPENDIX: DISJOINING PRESSURE .
2e” “sinh ¢ +2a) bi
The disjoining pressurH is given by the negative deriva- - A (i o) ¢-—2tanff 2 ta
tive of the total free energy with respect to the separation of ¢
the surfacesh, for constant depletion strengthand ranges, r( b 2e” “sinh(¢; +2a)
Xcoth —+a||—
2 Adi =)
pU_  «df| & df ddn X| ¢~ —2 tanit %-I—a cotf‘(%+a , (A5)
No Nogh| — MNoddm gh | —
ok df dpo| k df 9 nid(y _ze ASIF;(b(;JF)ZQ) ¢>—2tan)’<7>+a)
Nodd- sh | — Node gh | — 0=T T
® ¢ ¢-
x df ¢ +2cosh2—>(¢>—2tanh7). (AB)
>
- — , Al
Nodé- sh | — A o ) _
@3 The defining equations fdr, s, u, andv are
2 i + i
where we introduced, for convenience, the dimensionless _ 2. ¢<) +]:“(¢"¢<) ;E“(¢"¢>), (A7)
distancesh=«h and s=«s. The (four) derivatives of the cosh% e @ cosr{ % ta
free energy which appears in E¢ALl), df/de, with ¢
=(¢dm, b, ¢, d-), can be obtained directly by using the
free-energy expressiorﬁz_g) and(47). On the other hand, the 5= Fa(Pi )+ Fuldi @) (A8)

partial derivativesdep/dh|,s are obtained by the matrix LA ’
product 2

2e ¢ cos)’(
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U=e A (b )T A(bm =0,  (A9) du  dv dv
A=~ dgy do. (A22)

v=e A (¢, d-)+2 sinh%zo, (A10)
dv e “sinh(¢;+2a)

and their derivatives necessary for the evaluation of the Jaco- db - Ad b)) (A23)
. 0 I [ [l >
bian a(h,s,u,v)/(dm, b, di,d=):

bm P dv e “sinh( - +2a) ¢
— 2 tanh— coth—— _ > he— 2
dh _ E&m ) 2 (ALL) db- Db 05 (A24)
dém — _ ém Al po)
2 Putting all these together into the expression for the dis-
— joining pressurdEq. (Al)], leads to a very simple final re-
dh 2 1 .
= + , (A12) sult:
do-  A(dm, o) e A (i, Do)
- — anesint 2™ — nixe
_ P< BII=4ngysintf — =n(x=0). (A25)
dh £ 0 )+ EMD 6] C°“< 2 ' 2
do, e “Ay(di d<)

T
2e sml—(?+a Although it might be tempting to attribute this simple final

result to the contact-value theorem for charged plates, this is

Coﬂ,(%Jr o " not the casésee the discussion at the end of Sed. Il
+— tam‘(7I +tal, (A13)
e A, b-) 2. Overlapping regime
dn 1 For the overlapping regime, it is convenient to apply the
o " a , (A14) parametric differentiation just on the last terf,,, of the
b> e A (¢ b-) total free energy47), since the two first terms yield a con-
_ stant contribution to the disjoining pressure:
ds
—— =0, (A15) 1 IF
d¢m [:]_E_ni_ﬁ :2(1_e74a)_4(1_e72a)
_ 0 0d —
ds 1
=— , (A16) ra
do- 2 A (i, p-) - ni af% _ (A26)
0o d —

é-
ds  [Eu(d1, )+ Euldi )] °°”<7+“

= ) - — The deiivatives of the last terfiEq. (48)] of the total free
dé 4e‘“sin|—(%+a 2e Aol di <) energyf 4. are given by
COt"(%"'a b, K dTaux —2a ; Pm
+T tan)’(?l-l—a , (A17) n_o d¢m:4e Eza(¢m,¢<)8|n|'<7+2a
& Al diid-) ~ 2e *sinh( ¢yt 4a) e £
s 1 . o) | =2t e
do- 2e ¢ . ' -
> 2e7°D,(61.0) xcotF(%wLZa , (A27)
du o sinhop, (A19)
dém  Aldm.¢<)’ _
_ - K dfax 2e72sini( ¢ +4a) L tam(&“
du _ sinh¢ +e smf(¢<+2a), (a20 Mo db-  Do(bmido) b 5 @
d¢< A(¢m:¢<) Aa(¢i 1¢)<) o
_ 2e “sinh($_+2a) —2tan|‘($+
du e “sinh(¢+2a) (A21) A(i d<) ¢< 2 %)

dei Al b)) (A28)
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K d?aux_ w )—((ﬁl
n_o dd,l =—4e [ga(¢i1¢<)_ga(¢iv¢>):|5|n ?-l-a
2e”“sinh ¢+ 2a) &
g | P2t Z e
= 2e“sinh(¢;+2a)
XCO&(T”’ T AL
X| ¢~ —2 tanit %"‘Cl)cot.’(%'f'a ,

(A29)
idﬂux_Ze*“sinH¢>+2a)
Nnode- A, ¢-)

+2 coshd)z—>( ¢p-—2 tanh¢2—>) . (A30)

¢>—2tanr{%+a

Now the defining equations fdr, s, u, andv are

]:a(d)i -¢>)_‘7:a(¢i 1¢<)

d).
e “ cosl‘( i

, (A31)
2

— ]:211(¢m1¢)<) fa(¢’i!¢>)_]:a(¢ia¢<)
S +

eZ“cosk(%JrZa) 2e“cosk(%+a)

(A32)

ds _ Eral bm <)
dém 2e‘2“sinl—<ﬁ+2a
2
tan?‘(%-f—Za COt”(%-f‘Za’
- . (A39)
e “Ay(dm,d<)
ds 1 - 1
do< e 29, (dm. b)) 28 “A(di o)
(A40)
_ C0tl’<$+a
ds :[5a(¢i =¢<)_5a(¢i 1¢>)] n 2

déy 4e_asm% b, 2e"“Do(i, <)

2
COtI‘(%-I—a &
- tam—(—'+a , (A41)
2e “A (i, 0-) 2
ds 1 a2
db- 26 A, (5, 4-)
o
du _e sml~(¢m+4a), (Ad3)

d¢m AZa(¢mv¢<)

du __e‘z"‘sinr(¢<+4a)+e‘”‘sinr(¢<+2a)
d¢< a A2a(¢m1¢<) Aa(¢i 7¢<)

u:e_aAa( d)i l¢<)_e_2aA2a( ¢m!¢<)zo, (A33) (A44)
—a . ¢>_ ﬂ__ e*asinr,(d)i_i_za)
voe Rl dngoltzong =0 (A3 R WP (A45)
and their associated derivatives for the evaluation of the du _ dv _ dv s nes)
Jacobiard(h,s,u,v)/d(bm, b ,bi,b-): 4. " dg. " do. " °
dn dv. e “sinh(¢+2a)
b 39 déi AJdido) (A47)
h dv e “sinh(¢-+2a) b
dh 1 _
o (A30 (PR e S R R

dé- e A (¢, ¢-)

¢
dh _[£,(61.00)~ .80 C°”<7+“

do; ge—“sin%%ﬁLa e “Ay (i, do)
CO'[”(%-I—a 6
e > A37
e A (b, b-) ta”k( 2 ) (A3T)
dh 1
= (A38)

do- e A (¢, ¢-)

Putting all these together into the disjoining pressure ex-
pression(A26), for the overlapping regime we obtain

Bll=ng(e™ ¢m= 8o+ gPm—24 2~ ¢<4a_ g™ ¢<~8a)

=2ng[e % cosi ¢+ 4a)—1+2e <% sinh 2x]

=n(x=0)+2An+<x=s— g) (A49)

where the discontinuity of the density of catioAs, upon
crossing the surface locatedxat s— (h/2) is defined by Eq.
(35). We remark that, due to this additional term, in this case
the disjoining pressurdoes not have the forwf the expres-
sion given by the contact-value theorem for charged plates.
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