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Electrolytic depletion interactions

M. N. Tamashiro* and P. Pincus
Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106-5130

~Received 8 July 1999!

We consider the interactions between two uncharged planar macroscopic surfaces, immersed in an electro-
lyte solution, which are induced by interfacial selectivity. These forces are taken into account by introducing
a depletion free-energy density functional, in addition to the usual mean-field Poisson-Boltzmann functional.
The minimization of the total free-energy functional yields the density profiles of the microions and the
electrostatic potential. The disjoining pressure is obtained by differentiation of the total free energy with
respect to the separation of the surfaces, holding the range and strength of the depletion forces constant. We
find that the induced interaction between the two surfaces is always repulsive for sufficiently large separations,
and becomes attractive at shorter separations. The nature of the induced interactions changes from attractive to
repulsive at a distance corresponding to the range of the depletion forces.@S1063-651X~99!14012-1#

PACS number~s!: 05.70.Np, 65.50.1m, 61.20.Qg, 87.10.1e
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I. INTRODUCTION

Electrostatic interactions often play an important role in
variety of different systems, ranging from biological mem
branes to chemical industrial paint ingredients. In so
cases, it provides the underlying mechanism for the sta
zation of mesoscopic systems against flocculation and
cipitation. When two macroscopic charged surfaces appro
one another, the result isusually a repulsive force, which
inhibits a further approach. For two flat charged plates,
effect can be understood in a physical picture in terms of
osmotic pressure generated by the difference of the ion c
centration in the region between the two approaching s
faces and the electrolyte-reservoir concentration. On
other hand, attractive interactions, which lead to aggrega
or fusion, are sometimes a desirable feature. This is the c
for example, in the adhesion and fusion of vesicles and m
branes or in environmental sewage treatment. Furtherm
some experiments@1–5# and simulations@6–9# indicate that,
for small separations and high surface-charge densities,
like-charged polyions can indeed attract.

From the theoretical point of view, several distin
mechanisms leading to attractive interactions have been
posed, which are based on charge fluctuations@10–12#,
strong positional charge correlations@13–15#, anisotropic
hypernetted chain calculations@16# or strong bulk-counterion
correlations@17,18#. Very recently a unified treatment, tak
ing into account quantum fluctuations and structural corre
tions of the Wigner crystals formed by the condensed co
terions onto the charged surfaces, has been proposed@19#.
Although the bare Coulomb force between two macrosco
surfaces is always repulsive, correlations and/or fluctuati
can induce attractive interactions, which occasionally m
overcome the electrostatic repulsion between the two equ
charged surfaces. Correlations, which are entirely negle
within the mean-field Poisson-Boltzmann~PB! approxima-
tion ~Gouy-Chapman theory@20,21#!, are believed to bees-
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sential ingredientsfor the appearance of attractive intera
tions. Thus most proposed mechanisms which lead
attraction always include a non-mean-field effect.

In this work we propose a mechanism for attraction b
tween two identical plates. In contrast to the previous th
retical pictures, this mechanism is entirely at the mean-fi
level. However, nonpure electrostatic forces are taken
account by including depletion forces—for example, tho
associated with finite ionic radii—acting on one of the io
species surrounding the plates. For simplicity, we consi
the case in which the identical plates are uncharged and
finitely large. By consideringunchargedplates, we can dis-
cern the effect of the depletion forces separately from
usual electrostatic mean-field repulsion, which indeed tu
out to be entropic and not strictly electrostatic. If we treat t
surface-chargedcase, we are not able to separate the t
contributions. Due to the simplicity of the model, it is po
sible to derive explicit, analytical expressions for all therm
dynamical properties, including the disjoining pressure.

The remainder of this paper is organized as follows.
Sec. II the model is introduced and the general equations
obtained. Section III is devoted to solving the generalized
equations for the nonoverlapping regime, when the deple
zones associated with the two plates do not overlap.
solution to the generalized PB equations for the overlapp
regime, when the depletion zones associated with the
plates do overlap, is obtained in Sec. IV. Some conclud
remarks are presented in Sec. V. The closed analytical
pression for the disjoining pressure is obtained in the App
dix.

II. DEFINITION OF THE MODEL

We shall consider two uncharged macroscopic surfa
immersed in a symmetric 1:1 electrolyte within mean-fie
theory. The system is modeled by two planar, infinitely th
rigid and uncharged surfaces, separated by a distanceh, in
contact with a monovalent salt reservoir of bulk concent
tion n0. A Cartesian coordinate system is chosen so that
surfaces are located at thex56h/2 planes, in such a way
that thex axis is perpendicular to the surfaces. At the mea
6549 © 1999 The American Physical Society
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6550 PRE 60M. N. TAMASHIRO AND P. PINCUS
field level the microions are treated as an inhomogene
ideal gas, with local number densitiesn1(x) andn2(x) for
the positive and negative ions, respectively. We assume
due to somenonelectrostatic depletionmechanism, these lo
cal densities become inhomogeneous in the region clos
the infinite plates. These inhomogeneities are governed
the reduced~total! free-energy functional~per unit area!, f̄
5b f , whereb51/kBT,

f̄ 5 f̄ depletion1 f̄ PB, ~1!

which we split into two terms. The first term of Eq.~1!
corresponds to anonelectrostatic depletionfree energy~per
unit area!,

f̄ depletion5eE
2`

`

dx n1~x!FwsS x1
h

2D1wsS x2
h

2D G , ~2!

wheree is a depletion-strength parameter~which has dimen-
sions of distance!, andws(j) can be considered a normalize
external~nonelectrostatic! potential with a finite short range
s. This term breaks the original degeneracy between cat
and anions, penalizing positive particles that are closest f
a distances to the surfaces. It mimics, for example, the effe
of different sizes for the microions. Smaller negative ions
allowed to come in direct contact with the neutral surfac
whereas the positive particles, due to their larger size,
held apart from an effective distances, related to their sizes
The effect of this term on the system is to yield an exces
anions in the region surrounding the plates, leading to
inhomogeneity of the local densities of microions in the
cinity of the uncharged plates. Thus, although the surfa
are themselves neutral, this imbalance of microions gi
rise to a nonvanishing electric field. To allow analytical c
culations, we shall hereafter assume thatws has the step-
function form

ws~j!5H 0 for uju>s

1

2s
for uju,s.

~3!

In the limit s→0, the functionws(j) corresponds to the
Dirac delta functiond(j)5 lims→0ws(j). Therefore,ws has
dimensions of inverse distance.

The second term of Eq.~1!, f̄ PB, represents the reduce
bulk excessPB free-energy functional~per unit area!,

f̄ PB5E
2`

`

dx$n1~x!„ln@L3n1~x!#21…

1n2~x!„ln@L3n2~x!#21…1 1
2 f~x!@n1~x!2n2~x!#

2bm@n1~x!1n2~x!#1bP0%

5E
2`

`

dx$n1~x!ln@n1~x!/n0#1n2~x!ln@n2~x!/n0#

1 1
2 f~x!@n1~x!2n2~x!#2@n1~x!1n2~x!22n0#%,

~4!
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where L is an arbitrary length scale. The electrochemic
potential and the reference pressure were set, respective
bm5 ln(L3n0) andbP052n0, since the system is in electro
chemical equilibrium with the infinite salt reservoir. The r
duced electrostatic potential,f(x)5bec(x), wheree is the
proton charge andc(x) is the electrostatic potential, satisfie
the Poisson equation

d2f~x!

dx2
524p l @n1~x!2n2~x!#, ~5!

where l 5be2/D is the Bjerrum length, and the solvent
treated as a continuum of dielectric constantD.

Minimization of the reduced total free-energy function
f̄ @n1(x),n2(x)# with respect to the number densities,

d f̄ @n1~x!,n2~x!#

dn1~x!
5 ln@n1~x!/n0#1f~x!1eFwsS x1

h

2D
1wsS x2

h

2D G50, ~6!

d f̄ @n1~x!,n2~x!#

dn2~x!
5 ln@n2~x!/n0#2f~x!50, ~7!

leads to the Boltzmann distribution for the optimum micr
ion profiles:

n1~x!5n0expF2f~x!2ewsS x1
h

2D2ewsS x2
h

2D G ,
~8!

n2~x!5n0 exp@f~x!#. ~9!

Replacing Eqs.~8! and ~9! into the Poisson equation~5!
leads to a generalized PB equation

d2f~x!

dx2
5

k2

2 H exp@f~x!#2expF2f~x!2ewsS x1
h

2D
2ewsS x2

h

2D G J , ~10!

where k[A8pn0l is the inverse of the Debye screenin
length.

The appropriate boundary conditions are the vanishing
the electrostatic potential and the electric field at infinity,

f~x→6`!5f8~x→6`!50; ~11!

the vanishing of the electric field at the midplane (x50),

f8~x50!50; ~12!

and the continuity of the electrostatic potential and the el
tric field across the planes located atx56(h/2)6s,
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fS x↑6
h

2
6sD5fS x↓6

h

2
6sD , ~13!

f8S x↑6
h

2
6sD5f8S x↓6

h

2
6sD , ~14!

wheref(x↑y)[ limx→y1
f(x) and f(x↓y)[ limx→y2

f(x).
The boundary conditions~13! and~14! are based on the fac
that the charge distribution, which appears on the right-h
side of the Poisson equation~5!, contains just afinite jumpat
the planesx56(h/2)6s.

By symmetry we havef(x)5f(2x), and we need only
to consider thepositive xaxis. Because of the nonelectro
d

static depletion ofcationsaround the surfaces located atx
56h/2, the electrostatic potentialf(x) is always negative,
since there is an effective excess ofanionsaround the sur-
faces. We shall consider two regimes separately, namely
nonoverlapping regime (h.2s) and the overlapping regime
(h,2s).

III. NONOVERLAPPING REGIME, h>2s

In the nonoverlapping regime, which occurs when t
separation between the surfaces is larger than the rang
the depletion forces,h.2s, the depletion zones associate
with the two interfacesdo not overlap,and the generalized
PB equation reads
l

d2f~x!

dx2
5H k2 sinhf~x!, for 0<x<

h

2
2s and x>

h

2
1s

e22ak2 sinh@f~x!12a# for
h

2
2s,x,

h

2
1s,

~15!

where we introduced the parametera[e/8s.
Using the identityd2f(x)/dx25 1

2 d@f8#2/df, the nonlinear second-order differential equation represented by Eq.~15! can
be analytically integrated. Introducing the midplane electrostatic potential,fm5f(x50), and the internal and externa
electrostatic potentials in the vicinity of the interface atx5h/2, f,5f„x5(h/2)2s… andf.5f„x5(h/2)1s…, the solutions
which satisfy the boundary conditions~11! and ~12! can be written explicitly as

f8~x!55
kD@fm ,f~x!# for 0<x<

h

2
2s

k sgn~x2xi !e
2aDa@f i ,f~x!# for

h

2
2s,x,

h

2
1s

22k sinh
f~x!

2
for x>

h

2
1s,

~16!

f~x!5

¦

2 arcsinhF sinh
fm

2

cnS kx cosh
fm

2
,1Y cosh

fm

2 D G for 0<x<
h

2
2s

2arcsinhH sinhS f i

2
1a D

cnFe2ak~ uxu2xi !coshS f i

2
1a D ,1Y coshS f i

2
1a D GJ 22a for

h

2
2s,x,

h

2
1s

4 arctanhH expF2kS UxU2 h

2
2sD G tanh

f.

4 J for x>
h

2
1s,

~17!
th
ic

the
where we introduced

D~fm ,f!52A2 coshf22 coshfm

52 sinh
f

2
A12Fsinh

fm

2 Y sinh
f

2 G2

,

~18!
Da~f i ,f!5A2 cosh~f12a!22 cosh~f i12a!. ~19!

cn(u,k) is the Jacobi cosine-amplitude elliptic function wi
modulusk @22,23#, xi is the inversion point where the electr
field vanishes,f8(xi)50, and the electrostatic potentialf i
5f(xi) is an integration constant to be determined by
boundary conditions~13! and ~14!.

Matching the electrostatic potentialf(x) at the planesx
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5(h/2)6s by imposing the boundary conditions~13! gives

f,52 arcsinhH sinh
fm

2

cnFkS h

2
2sD cosh

fm

2
,1Y cosh

fm

2 GJ ,

~20!

ks5
Fa~f i ,f,!1Fa~f i ,f.!

2e2a coshS f i

2
1a D , ~21!

kxi5
F~fm ,f,!

cosh
fm

2

1
Fa~f i ,f,!

e2a coshS f i

2
1a D , ~22!

where we introduced

F~fm ,f!5FS arccosFsinh
fm

2 Y sinh
f

2 G ,1Y cosh
fm

2 D ,

~23!

Fa~f i ,f!5F~f i12a,f12a!

5FH arccosFsinhS f i

2
1a D Y sinhS f

2
1a D G ,

1Y coshS f i

2
1a D J , ~24!

and F(c,k)5*0
cdu/A12k2 sin2 u is the elliptic integral of

the first kind@22,23#.
On the other hand, matching the electric fieldf8(x) at the

planesx5(h/2)6s by imposing the boundary condition
~14! leads to

e22a@cosh~f,12a!2cosh~f.12a!#

5coshf,2coshfm22 sinh2
f.

2
, ~25!

cosh~f i12a!5cosh~f.12a!22e2a sinh2
f.

2
. ~26!

Equations~21! and~25! represent a pair of coupled equatio
which can be solved forfm andf. , since we can use Eqs
~20! and~26! to eliminatef, andf i , respectively. Once we
have obtainedfm and f. which solve Eqs.~21! and ~25!,
the electrostatic potentialf(x) can be obtained by replacin
them into the closed expression~17!. To illustrate typical
profiles for the nonoverlapping regime, in Fig. 1 we show
reduced electrostatic potentialf(x) and the density profiles
n6(x) for fixed values ofe, s, and h. We also present the
particle-density excess over the reservoir,

n~x![n1~x!1n2~x!22n0 , ~27!

and the charge density,

r~x![n1~x!2n2~x!. ~28!
e

The total free-energy density associated with the elec
static potential~17! and the microion profiles~8! and ~9! is
obtained by replacing their closed forms into the total fre
energy functional, given by Eq.~1!, and performing the in-
tegrations. After some algebra, we obtain

k

n0
f̄ 58ks~12e22a!12D~fm ,f,!S f,24 coth

f,

2 D

116E~fm ,f,! cosh
fm

2
28F~fm ,f,!

sinh2
fm

2

cosh
fm

2

12e2aDa~f i ,f,!Ff,24 cothS f,

2
1a D G

12e2aDa~f i ,f.!Ff.24 cothS f.

2
1a D G

116e2a@Ea~f i ,f,!1Ea~f i ,f.!#coshS f i

2
1a D

28e2a@Fa~f i ,f,!1Fa~f i ,f.!#

sinh2S f i

2
1a D

coshS f i

2
1a D

14 sinh
f.

2 S f.24 tanh
f.

4 D , ~29!

where we introduced

E~fm,f,!5ES arccosFsinh
fm

2 Ysinh
f,

2 G ,1Y cosh
fm

2 D ,

~30!

Ea~f i ,f!5E~f i12a,f12a!

5EH arccosFsinhS f i

2
1a D Y sinhS f

2
1a D G ,

1Y coshS f i

2
1a D J , ~31!

FIG. 1. Reduced electrostatic potentialf(x) and density profiles
as functions of the distancex for the set of parameterske51, ks
51/2, andkh55 ~nonoverlapping regime!. All densities are nor-
malized to the salt reservoir densityn0. The positive portion of the
particle-density excessn(x) was amplified by a factor of 25.
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PRE 60 6553ELECTROLYTIC DEPLETION INTERACTIONS
andE(c,k)5*0
cduA12k2sin2u is the elliptic integral of the

second kind@22,23#. The closed analytical expression~29!
was checked against numerical integration of the free-ene
density~1!. In Fig. 3, we present the total free-energy dens
as a function of the separation of the surfacesh for a fixed
value of the depletion strengthe and several values of th
depletion ranges.

The disjoining pressureP is given by the negative deriva
tive of the total free energy with respect to the separation
the surfaces,h, for constant depletion strengthe and ranges,

bP[2k
] f̄

]h̄
U

a,s̄

, ~32!

where we introduced the dimensionless distancesh̄5kh and
s̄5ks. After a lengthy calculation~see the Appendix!, we
obtain a very simple final expression for the disjoining pr
sure:

bP54n0 sinh2
fm

2
5n~x50!. ~33!

The above simple analytical expression was checked ag
numerical differentiation of the free-energy density for t
nonoverlapping regime~29!. Thus, it turns out that the dis
joining pressure for the nonoverlapping regime is given s
ply by the excess osmotic pressure of the microions at
midplane over the bulk~reservoir! pressure. Although it
might be tempting to attribute this simple result to t
contact-value theorem for charged plates@24–26#, we stress
that this is not the case. Actually, an expression for
particle-density excess similar to the charged-plates cas

n~x!5n~x50!1
n0

k2
@f8~x!#2, ~34!

holds only for 0<uxu<u(h/2)2su. Since there are nonvan
ishing discontinuities for the density of cationsn1(x) upon
crossing the surfaces atx56(h/2)6s,

FIG. 2. Reduced electrostatic potentialf(x) and density profiles
as functions of the distancex for the set of parameterske51, ks
51/2, andkh51/2 ~overlapping regime!. All number densities are
normalized to the salt reservoir densityn0. The positive portion of
the particle-density excessn(x) was amplified by a factor of 10.
gy
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e

Dn1S x5Uh2 2sU D[n1S x↑Uh2 2sU D2n1S x↓Uh2 2sU D ,

~35!

Dn1S x5Uh2 1sU D[n1S x↑Uh2 1sU D2n1S x↓Uh2 1sU D ,

~36!

the corrected expressions for the particle-density excess
uxu.u(h/2)2su are

n~x!5n~x50!1Dn1S x5Uh2 2sU D1
n0

k2
@f8~x!#2

5n~x5xi !1
n0

k2
@f8~x!#2 for

~37!

Uh2 2sU,x,Uh2 1sU,
n~x!5n~x50!1Dn1S x5Uh2 2sU D1Dn1S x5Uh2 1sU D

1
n0

k2
@f8~x!#2

5
n0

k2
@f8~x!#2 for x.Uh2 1sU, ~38!

where we used Eqs.~25! and ~26! to simplify the above
expressions. However, these additional contributions ca
when we evaluate the disjoining pressure~for the nonover-
lapping regime!, and we obtain Eq.~33!, a result similar to
the contact-value theorem expression for charged pla
Since the disjoining pressure~33! is always positive, the in-
teraction between the surfaces for the nonoverlapping reg
is always repulsive.At the end of Sec. IV, in Fig. 4, we
present the disjoining pressure as a function of the separa
of the surfacesh for a fixed value of the depletion strengthe
and several values of the depletion ranges.

FIG. 3. Reduced total free-energy densityf̄ as a function of the
separation of the surfacesh for a fixed value of the depletion
strength (ke51) and three values of the depletion range (ks
51/4, 1/2, and 1!. Although the free-energy density itself is con
tinuous upon crossing the separationh52s, it has a kink at this
special value, giving rise to a change between attractive and re
sive forces~see Fig. 4!.



depletion

g the

6554 PRE 60M. N. TAMASHIRO AND P. PINCUS
IV. OVERLAPPING REGIME, h<2s

In the overlapping regime, which occurs when the separation between the surfaces is smaller than the range of the
forces,h,2s, the depletion zones associated with the two interfacesdo overlap,and the generalized PB equation reads

d2f~x!

dx2
55

e24ak2 sinh@f~x!14a# for 0<x<s2
h

2

e22ak2 sinh@f~x!12a# for s2
h

2
,x,s1

h

2

k2 sinhf~x! for x>s1
h

2
.

~39!

The calculation is analogous to the case when there is no overlapping of the depletion zones,h.2s. Now the pair of
coupled equations to be solved forfm5f(x50) andf.5f„x5s1(h/2)… is given by

ks5
F2a~fm ,f,!

e22a coshS fm

2
12a D 1

Fa~f i ,f.!2Fa~f i ,f,!

2e2a coshS f i

2
1a D ~40!

and

e22a@cosh~f,12a!2cosh~f.12a!#5e24a@cosh~f,14a!2cosh~fm14a!#22sinh2
f.

2
, ~41!

wheref,5f„x5s2(h/2)… andf i5f(x5xi) are eliminated by using the relations

f,52 arcsinhH sinhS fm

2
12a D

cnFe22akS s2
h

2D coshS fm

2
12a D ,1YcoshS fm

2
12a D GJ 24a, ~42!

cosh~f i12a!5cosh~f.12a!22e2a sinh2~f./2!. ~43!

Once solved the system of Eqs.~40! and~41!, the electric field, and the electrostatic potential can be obtained by replacin
solution (fm ,f.) into the closed expressions

f8~x!55
ke22aD2a@fm ,f~x!# for 0<x<s2

h

2

k sgn~x2xi !e
2aDa@f i ,f~x!# for s2

h

2
,x,s1

h

2

22k sinh
f~x!

2
for x>s1

h

2
,

~44!

f~x!5

¦

2 arcsinhH sinhS fm

2
12a D

cnFe22akx coshS fm

2
12a D ,1YcoshS fm

2
12a D GJ 24a for 0<x<s2

h

2

2 arcsinhH sinhS f i

2
1a D

cnFe2ak~ uxu2xi !coshS f i

2
1a D ,1Y coshS f i

2
1a D GJ 22a for s2

h

2
,x,s1

h

2

4 arctanhH expF2kS uxu2
h

2
2sD G tanh

f.

4 J for x>s1
h

2
,

~45!

with the inversion point given by
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kxi5
F2a~fm ,f,!

e22a coshS fm

2
12a D 2

Fa~f i ,f,!

e2a coshS f i

2
1a D . ~46!

To illustrate typical profiles for the overlapping regime, in Fig. 2 we show the reduced electrostatic potentialf(x) and the
density profilesn6(x), n(x), andr(x) for fixed values ofe, s, andh.

Again, it is possible to obtain a closed analytical expression for the total free-energy density,

k

n0
f̄ 54S s̄2

h̄

2
D ~12e24a!14h̄~12e22a!1

k

n0
f̄ aux, ~47!

k

n0
f̄ aux52e22aD2a~fm ,f,!Ff,24 cothS f,

2
12a D G116e22aE2a~fm ,f,!coshS fm

2
12a D

28e22aF2a~fm ,f,!

sinh2S fm

2
12a D

coshS fm

2
12a D 22e2aDa~f i ,f,!Ff,24 cothS f,

2
1a D G

12e2aDa~f i ,f.!Ff.24 cothS f.

2
1a D G216e2a@Ea~f i ,f,!2Ea~f i ,f.!#coshS f i

2
1a D

18e2a@Fa~f i ,f,!2Fa~f i ,f.!#

sinh2S f i

2
1a D

coshS f i

2
1a D 14 sinh

f.

2 S f.24 tanh
f.

4 D , ~48!
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which leads, after some algebra~see the Appendix!, to a
simple expression for the disjoining pressure:

bP[2k
] f̄

]h̄
ua,s̄52n0@e24a cosh~fm14a!21

12e2f,26a sinh 2a#

5n~x50!12Dn1S x5s2
h

2D . ~49!

The above simple analytical expression was checked ag
numerical differentiation of the free-energy density for t
overlapping regime~47!. It should be remarked that, in thi
case, the disjoining pressuredoes not have the formof the
expression given by the contact-value theorem for char
plates@24–26#. An additional contribution due to the discon
tinuity Dn1„x5s2(h/2)… of the density of cations upon
crossing the surface located atx5s2(h/2), appears. Con
trary to the nonoverlapping regime, this additional contrib
tion does not cancel when we evaluate the disjoining p
sure. According to this imbalanced pressure acting onto
neutral surfaces, this leads to an effective attraction betw
them.

Figures 3 and 4 show the total free-energy density and
associated pressure as a function of the separation of
surfacesh for a fixed value of the depletion strengthe and
several values of the depletion ranges. The nature of the
interactions changes from attractive to repulsive at a sep
tion h52s.
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V. CONCLUDING REMARKS

We have proposed a mechanism for attraction betw
neutral plates immersed in a monovalent electrolyte solut
which does not include any correlation or fluctuation effec
The electrostatic potential and the density profiles of the
croions are obtained from analytical solutions of the gen
alized PB equations, which include nonelectrostatic dep
tion interactions. Explicit analytical expressions of a
thermodynamical properties, including the disjoining pre
sure, were obtained.

We found that the repulsive interactions at large sepa

FIG. 4. Disjoining pressureP as a function of the separation o
the surfacesh for a fixed value of the depletion strength (ke51)
and three values of the depletion range (ks51/4, 1/2, and 1!. This
graph corresponds to the negative derivative of the curves of Fig
Note the discontinuity of the pressure at the separationh52s, as-
sociated with the kink of the free energy.
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tions become attractive when the separation between
plates is decreased. The range of the attractive force
closely related to the range of the nonelectrostatic deple
interactions introduced in the formulation of the model. A
though this result is not at all surprising, since the attract
is induced by the imbalanced pressure originated from
ionic depletion in the region between the two approach
surfaces, we found that the disjoining pressuredoes not have
the formof the expression given by the contact-value the
rem for charged plates.

The proposed mechanism could mimic neutral surfa
immersed in an electrolyte solution containing ions of diffe
ent sizes. We expect to observe attraction when the sep
tion between the two surfaces is comparable to the size o
smaller ions. We stress the fact that we do not include
non-mean-field effects to obtain attractive forces. Surely,
short separations, other features should be taken into
count, as for example, the discreteness of the charges
ionic correlations. However, using an exactly solvab
model, we showed that the inclusion of non-mean-field
fects is not anecessary conditionto obtain attractive inter-
actions.
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APPENDIX: DISJOINING PRESSURE

The disjoining pressureP is given by the negative deriva
tive of the total free energy with respect to the separation
the surfaces,h, for constant depletion strengthe and ranges,

bP

n0
[2

k

n0

] f̄

]h̄
U

a,s̄

52
k

n0

d f̄

dfm

]fm

]h̄
U

a,s̄

2
k

n0

d f̄

df,

]f,

]h̄
U

a,s̄

2
k

n0

d f̄

df i

]f i

]h̄
U

a,s̄

2
k

n0

d f̄

df.

]f.

]h̄
U

a,s̄

, ~A1!

where we introduced, for convenience, the dimension
distancesh̄5kh and s̄5ks. The ~four! derivatives of the
free energy which appears in Eq.~A1!, d f̄ /dw, with w
5(fm ,f, ,f i ,f.), can be obtained directly by using th
free-energy expressions~29! and~47!. On the other hand, the
partial derivatives]w/]h̄ua,s̄ are obtained by the matrix
product
he
is
n

n
e
g

-

s
-
ra-
he
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r
c-
nd

f-

,

-

ce
-

f

s

S ]fm

]h̄
,
]f,

]h̄
,
]f i

]h̄
,
]f.

]h̄
D

a,s̄

5F ]~ h̄,s̄,u,v !

]~fm ,f, ,f i ,f.!
G21

~1,0,0,0!, ~A2!

whereu andv are the boundary conditions~14! written in a
parametric form involvingfm , f, , f i , andf. . We will
give the explicit expressions ofu and v ~and their deriva-
tives! when we separately treat the nonoverlapping and
overlapping regimes.

1. Nonoverlapping regime

For the nonoverlapping regime, the total free-energy d
sity is given by Eq.~29!, with derivatives

k

n0

d f̄

dfm
54E~fm ,f,!sinh

fm

2

2
2 sinhfm

D~fm ,f,! S f,22 tanh2
fm

2
coth

f,

2 D ,

~A3!

k

n0

d f̄

df,
5

2 sinhf,

D~fm ,f,! S f,22tanh
f,

2 D
1

2e2a sinh~f,12a!

Da~f i ,f,! Ff,22tanhS f,

2
1a D G ,

~A4!

k

n0

d f̄

df i
54e2a@Ea~f i ,f,!1Ea~f i ,f.!#sinhS f i

2
1a D

2
2e2a sinh~f i12a!

Da~f i ,f,! Ff,22 tanh2S f i

2
1a D

3cothS f,

2
1a D G2

2e2a sinh~f i12a!

Da~f i ,f.!

3Ff.22 tanh2S f i

2
1a D cothS f.

2
1a D G , ~A5!

k

n0

d f̄

df.
5

2e2a sinh~f.12a!

Da~f i ,f.! Ff.22 tanhS f.

2
1a D G

12 cosh
f.

2 S f.22 tanh
f.

2 D . ~A6!

The defining equations forh̄, s̄, u, andv are

h̄5
2F~fm ,f,!

cosh
fm

2

1
Fa~f i ,f,!1Fa~f i ,f.!

e2a coshS f i

2
1a D , ~A7!

s̄5
Fa~f i ,f,!1Fa~f i ,f.!

2e2a coshS f i

2
1a D , ~A8!
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u5e2aDa~f i ,f,!1D~fm ,f,!50, ~A9!

v5e2aDa~f i ,f.!12 sinh
f.

2
50, ~A10!

and their derivatives necessary for the evaluation of the J
bian ](h̄,s̄,u,v)/](fm ,f, ,f i ,f.):

dh̄

dfm
52

E~fm ,f,!

sinh
fm

2

2

2 tanh
fm

2
coth

f,

2

D~fm ,f,!
, ~A11!

dh̄

df,
5

2

D~fm ,f,!
1

1

e2aDa~f i ,f,!
, ~A12!

dh̄

df i
52

@Ea~f i ,f,!1Ea~f i ,f.!#

2e2a sinhS f i

2
1a D 2F cothS f,

2
1a D

e2aDa~f i ,f,!

1

cothS f.

2
1a D

e2aDa~f i ,f.!
G tanhS f i

2
1a D , ~A13!

dh̄

df.
5

1

e2aDa~f i ,f.!
, ~A14!

ds̄

dfm
50, ~A15!

ds̄

df,
5

1

2e2aDa~f i ,f,!
, ~A16!

ds̄

df i
52

@Ea~f i ,f,!1Ea~f i ,f.!#

4e2a sinhS f i

2
1a D 2F cothS f,

2
1a D

2e2aDa~f i ,f,!

1

cothS f.

2
1a D

2e2aDa~f i ,f.!
G tanhS f i

2
1a D , ~A17!

ds̄

df.
5

1

2e2aDa~f i ,f.!
, ~A18!

du

dfm
52

sinhfm

D~fm ,f,!
, ~A19!

du

df,
5

sinhf,

D~fm ,f,!
1

e2a sinh~f,12a!

Da~f i ,f,!
, ~A20!

du

df i
52

e2a sinh~f i12a!

Da~f i ,f,!
, ~A21!
o-

du

df.
5

dv
dfm

5
dv

df,
50, ~A22!

dv
df i

52
e2a sinh~f i12a!

Da~f i ,f.!
, ~A23!

dv
df.

5
e2a sinh~f.12a!

Da~f i ,f.!
1cosh

f.

2
. ~A24!

Putting all these together into the expression for the d
joining pressure@Eq. ~A1!#, leads to a very simple final re
sult:

bP54n0 sinh2
fm

2
5n~x50!. ~A25!

Although it might be tempting to attribute this simple fin
result to the contact-value theorem for charged plates, th
not the case~see the discussion at the end of Sec. III!.

2. Overlapping regime

For the overlapping regime, it is convenient to apply t
parametric differentiation just on the last term,f̄ aux, of the
total free energy~47!, since the two first terms yield a con
stant contribution to the disjoining pressure:

bP

n0
[2

k

n0

] f̄

]h̄
U

a,s̄

52~12e24a!24~12e22a!

2
k

n0

] f̄ aux

]h̄
U

a,s̄

. ~A26!

The derivatives of the last term@Eq. ~48!# of the total free
energy f̄ aux are given by

k

n0

d f̄aux

dfm
54e22aE2a~fm ,f,!sinhS fm

2
12a D

2
2e22a sinh~fm14a!

D2a~fm ,f,! Ff,22 tanh2S fm

2
12a D

3cothS f,

2
12a D G , ~A27!

k

n0

d f̄aux

df,
5

2e22a sinh~f,14a!

D2a~fm ,f,! Ff,22 tanhS f,

2
12a D G

2
2e2a sinh~f,12a!

Da~f i ,f,! Ff,22 tanhS f,

2
1a D G ,

~A28!
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k

n0

d f̄aux

df i
524e2a@Ea~f i ,f,!2Ea~f i ,f.!#sinhS f i

2
1a D

1
2e2a sinh~f i12a!

Da~f i ,f,! Ff,22 tanh2S f i

2
1a D

3cothS f,

2
1a D G2

2e2a sinh~f i12a!

Da~f i ,f.!

3Ff.22 tanh2S f i
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1a D cothS f.
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~A29!
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n0

d f̄aux

df.
5

2e2a sinh~f.12a!

Da~f i ,f.! Ff.22 tanhS f.

2
1a D G

12 cosh
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2 S f.22 tanh
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2 D . ~A30!

Now the defining equations forh̄, s̄, u, andv are

h̄5
Fa~f i ,f.!2Fa~f i ,f,!

e2a coshS f i

2
1a D , ~A31!
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2
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u5e2aDa~f i ,f,!2e22aD2a~fm ,f,!50, ~A33!

v5e2aDa~f i ,f.!12 sinh
f.

2
50, ~A34!

and their associated derivatives for the evaluation of
Jacobian](h̄,s̄,u,v)/](fm ,f, ,f i ,f.):
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50, ~A35!
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, ~A47!
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df.
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e2a sinh~f.12a!

Da~f i ,f.!
1cosh
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. ~A48!

Putting all these together into the disjoining pressure
pression~A26!, for the overlapping regime we obtain

bP5n0~e2fm28a1efm2212e2f,24a22e2f,28a!

52n0@e24a cosh~fm14a!2112e2f,26a sinh 2a#

5n~x50!12Dn1S x5s2
h

2D , ~A49!

where the discontinuity of the density of cationsDn1 upon
crossing the surface located atx5s2(h/2) is defined by Eq.
~35!. We remark that, due to this additional term, in this ca
the disjoining pressuredoes not have the formof the expres-
sion given by the contact-value theorem for charged plat
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